Package: MSML 1.0.0.1

MSML: Model Selection Based on Machine Learning (ML)

Model evaluation based on a modified version of the recursive feature elimination algorithm. This package is designed to determine the optimal model(s) by leveraging all available features.

Authors:Hong Lee [aut, cph], Moksedul Momin [aut, cre, cph]

MSML_1.0.0.1.tar.gz
MSML_1.0.0.1.zip(r-4.5)MSML_1.0.0.1.zip(r-4.4)MSML_1.0.0.1.zip(r-4.3)
MSML_1.0.0.1.tgz(r-4.4-any)MSML_1.0.0.1.tgz(r-4.3-any)
MSML_1.0.0.1.tar.gz(r-4.5-noble)MSML_1.0.0.1.tar.gz(r-4.4-noble)
MSML_1.0.0.1.tgz(r-4.4-emscripten)MSML_1.0.0.1.tgz(r-4.3-emscripten)
MSML.pdf |MSML.html
MSML/json (API)

# Install 'MSML' in R:
install.packages('MSML', repos = c('https://mommy003.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mommy003/msml/issues

Datasets:
  • cov_train - 3 sets of covariates for training data set
  • cov_valid - 3 sets of covariates for validation data set
  • data_test - 7 sets of PRSs for test dataset and target phenotype
  • data_train - 7 sets of PRSs for training data set and target phenotype
  • data_valid - 7 sets of PRSs for validation dataset and target phenotype
  • predict_validation - Target phenotype and 127 sets of model configurations based on validation dataset

On CRAN:

3.78 score 1 scripts 129 downloads 3 exports 2 dependencies

Last updated 5 months agofrom:f1efe2aadf. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winOKOct 27 2024
R-4.5-linuxOKOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:model_configurationmodel_configuration2model_evaluation

Dependencies:r2reduxR2ROC